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Random waves and dynamo action 
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(Received 26 November 1973 and in revised form 22 June 1974) 

The propagation of waves in an inviscid, electrically conducting fluid is con- 
sidered. The fluid rotates with angular velocity Q* and is permeated by a mag- 
netic field b* which varies on the length scale L = Q2, where Q = Q*12/;\ (1  is the 
length scale of the waves, A is the magnetic diffusivity) is assumed large ( Q  > 1). 
A linearized theory is readily justified in the limit of zero Rossby number 
R, (=  Uo/Q*l, where U, is a typical fluid velocity) and for this case it is shown 
that the total wave energy of a wave train is conserved and transported a t  the 
group velocity except for that which is lost by ohmic dissipation. The analysis is 
extended to encompass the propagation of a sea of random waves. 

A hydromagnetic dynamo model is considered in which the fluid is confined be- 
tween two horizontal planes perpendicular to the rotation axis a distance Lo 
( =  O ( L ) )  apart. Waves of given low frequency I$ (=  O(R,Q*Q*)) and hori- 
zontal wavenumber 1-1 but random orientation are excited at  the lower boundary, 
where the kinetic energy density is 27rpU;. The waves are absorbed perfectly at 
the upper boundary, so that there is no reflexion. The linear wave energy equa- 
tion remains valid in the double limit l & R,Q& > Q-4, for which it is shown that 
dynamo action is possible provided A = Lo U $ 3 u ~ 2  > 1. When dynamo action 
maintains a weak magnetic field (A - 1 < 1)  which only slightly modifies the 
inertial waves analytic solutions are obtained. In  the case of a strong magnetic 
field (A > 1) for which Coriolis and Lorentz forces are comparable solutions are 
obtained numerically. The latter class includes the more realistic case (A -+ co) 
in which the upper boundary is absent. 

1. Introduction 
An interesting approach to the theory of dynamo action in an inviscid in- 

compressible fluid rotating with angular velocity Q* has been presented by 
Moffatt (1970, 1972; henceforth referred to as I, 11). In  I a sea of random inertial 
waves is considered. The waves can be divided into two classes: the waves with a 
positive (negative) cdmponent of group velocity in the direction of rotation are 
referred to as upward (downward) propagating waves. It is supposed that only 
upward-propagating waves are present and that these are distributed both iso- 
tropically and homogeneously. A small seed magnetic field is introduced having a 
length scale L which is large compared with the length scale I of the inertial 
waves. While the magnetic field is sufficiently weak to have no influence on the 
development of the inertial waves, the energy spectrum tensor retains its initial 
value. The a-effect can therefore be computed and the resulting kinematic 
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dynamo problem is readily solved. It is found that provided the length scale of 
the magnetic field is sufficiently large magnetic-field regeneration is always 
possible. There is, however, a fastest-growing mode identical in structure to the 
magnetic field defined byequation ( 6 . 6 ~ )  below which dominates after a long time. 
For obvious reasons the dominant mode of linear theory is selected in the subse- 
quent nonlinear stage in the development of the system, i.e. when the finite 
Lorentz force is taken into account. Because of the simple form of the magnetic 
field, this latter stage is also readily treated. 

In  I1 a random force field which excites waves at their natural frequency is 
assumed to prevail. With the introduction of viscous diffusion in addition to 
magnetic diffusion the waves have finite amplitude and do not grow indefinitely. 
The assumed properties of the random body force have similar characteristics 
to the sea of inertial waves postulated in I. Consequently only upward-propa- 
gating waves are investigated. As in I the a-effect is calculated and the ultimate 
steady state of the hydromagnetic dynamo is determined. 

The analysis of waves in a uniform medium is usually initiated by seeking 
wavelike solutions of the form u* expi(k* . x* - w*t * ) ,  where u*, k* and w* are 
constants, x* is the position and t* is the time. Then, for given wave vector k*, 
the frequency w* is determined by a dispersion relation. The waves in I are 
treated on this basis with the assumption that the magnetic field is constant. 
Since there is ohmic dissipation the waves decay at  a slow rate determined by 
the negative imaginary part of w* (say - iw:).  Consequently the energy spectrum 
becomes e*(k*) exp ( - 2wl t*) ,  where e*(k*) is its initial value. Though this 
treatment of the waves is satisfactory in a first approximation this is not neces- 
sarily the case a t  higher orders when the slow evolution of the energy spectrum 
is investigated. For then it must be anticipated that the amplitude of the waves 
will vary on the same length scale as the magnetic field. Indeed it may be shown 
that the wave energy spectrum e*(k*; x*, t * )  is constant at  points moving with 
the group velocity except for that lost by ohmic dissipation [see (2.32) and (C 3) 
below]. Here k* is the local wave vector, which evolves according to differential 
equations similar to (2.10) and (2.20) below. To solve the hydromagnetic dynamo 
problem the equation for the energy spectrum and the induction equation 
governing the mean magnetic field must be solved simultaneously. In  the para- 
meter range for which magnetic-field regeneration is considered in I it is shown 
(see appendix C) that advection at the group velocity dominates any local rate 
of change, so that the form assumed for the energy spectrum is too simplistic. 
In  the same range of parameters a further complication results from nonlinear 
wave interactions. This effect introduces further nonlinear terms in the energy 
equation (2.32) below which may have a significant effect over the dynamo time 
scale (see appendix C). 

The purpose of the present paper is twofold. First the analysis is developed to 
obtain new equations for the hydromagnetic dynamo. To this end a single wave 
train is considered and the equation (2.32) which governs the evolution of the 
total wave energy E*(k*) is derived. Similar equations have been postulated 
previously in the linearized theory of wave propagation for non-conservative 
systems in which the background medium varies slowly (e.g. see Bretherton 
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1970; Landahl 1972). The author is, however, unaware of any formal derivation 
of an equation similar to (2.32). Consequently, even though (2.32) is obtained in 
the restricted context of large-scale magnetic-field variations and ohmic decay, 
the result is perhaps of more general interest. 

Since the treatment of a single wave train involves only one wave vector k* 
at any instant in space and time, the analysis is extended in 3 3 to encompass a 
continuum of wave vectors and corresponding wave trains. The concept appears 
novel but only by this device is it possible to discuss the propagation of truly 
random waves in a medium with slowly varying properties. The extension is 
rendered non-trivial solely by the propertyt that, for a given wave train, k* does 
not necessarily remain fixed. The analysis reveals, however, that the total wave 
energy spectrum e* in k* space is related simply to E X  by a weighting factor (or 
density) v*. Here cr* accounts for variations in the volume d3k* occupied by a 
wave train whose total energy is E*v*d3k*, where the factor v*d3k* remains 
fixed as k* varies. Though the full development of Q 3 is not required in the later 
sections it is appropriate to formulate the problem in its entirety as it provides 
the key step in the extension of mean-field electrodynamics to the dynamics of 
the medium. 

To place hydromagnetic dynamos based on wave motions in perspective, 
it must be appreciated that only two hydromagnetic dynamos investigated in 
detail take account of the nature of the energy source. Busse (1973) has proposed 
a model based on BBnard convection combined with a shear flow, while Childress 
& Soward (1972) have developed a model in which rotation has a controlling in- 
fluence. In  both convection-driven models quasi-steady flows are envisaged, 
though wave motions are possible in the latter model if the Prandtl number is 
sufficiently small. The forced excitation of waves could then ensue in the form of 
overstability (e.g. see Chandrasekhar 1961, p. 118). The possible importance 
of wave motions in the dynamo process has long been appreciated. Braginskii 
(1964~) has given a comprehensive survey of possible wave excitation in the 
earth’s core by buoyancy forces and more recently (1 967) has investigated non- 
dissipative waves in which magnetic, Archimedean (buoyancy) and Coriolis 
forces all play a significant role: the so-called MAC waves. The instability en- 
visaged to drive the MAC waves is of a faster type than the slow resistive insta- 
bility mentioned above, where dissipation plays a key role.$ So far no dynamo 
sustained by wave motions, which incorporates the above ideas, has received 
detailed treatment. Indeed the pioneering work in I bypasses completely the 
need to maintain the waves by an external force field such as gravity. This happy 
state of affairs is achieved through the large store of kinetic energy in the inertial 
waves. Thus, while magnetic field is regenerated, kinetic energy is continually 

t For fully turbulent flows various techniques have been developed to take account of 
large-scale spatial variations of the mean magnetic field (Gubbins 1974) and turbulent in- 
tensity (Roberts & Soward 1975). Unfortunately the procedures depend on expansions of 
smoothly varying functions in k*, w* space and are inappropriate for random waves since 
they fail to accommodate the special property that wave energy is localized close to a three- 
dimensional manifold lying within the four-dimensional k*, w * space. 

$ For a more detailed discussion on buoyancy-driven waves, see Soward & Roberts 
(1975). 
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converted into magnetic energy: equipartition is never reached. Again, in I1 a' 
random body force is invoked so that steady dynamo action is possible. In  both 
I and I1 a preferred direction of wave propagation is necessary for the a-effect 
to operate. It is difficult to envisage how such a preferred direction could arise 
in a contained non-dissipative system, since waves would be reflected at  the 
boundaries. For this reason Gubbins (1974) has pointed out that, even if there is 
no preferred direction of wave propagation, additional anisotropy may result 
from gradients of the magnetic field. Consequently he proposes that the o x j- 
effect due to Radler (1968) may be significant. 

In  spirit the present paper extends the attitude adopted in I, namely the com- 
plete neglect of body forces in the fluid, and follows up the suggestion that energy 
for the waves may be introduced by an external source. In  other words an energy 
flux into the system at a rigid boundary (or possibly fluid interface) is con- 
ceived which can ultimately sustain a quasi-steady dynamo. The precise nature 
of the energy source is outside the scope of this paper and in this respect we pro- 
ceed no further than previous authors. An ideal model is proposed, however, 
which isolates new effects. Waves are excited randomly on a plane boundary 
normal to the rotation axis and propagate into the fluid, where some attenuation 
occurs owing to weak ohmic decay. Here the large-scale magnetic field lies in 
planes parallel to the boundary and is itself sustained by dynamo action. The 
dissipative process is crucial for, even if waves are reflected from some upper 
boundary, there will be a net upward flux of wave energy as envisaged in I. 
The propagation and attenuation of wave energy is described mathematically 
by either the wave energy equation (2.32) for a wave train or (3.13) for random 
waves; the dynamo process is described by (4.1). 

Though energy transport and spatial inhomogeneity should be incorporated 
into the Moffatt model (see appendix C) the two notions are made more trans- 
parent in the new model, where the former is necessary for fluid motions even 
to occur and the latter is an obvious consequence of spatial wave attenuation. 
Thus it provides an interesting and novel application of the wave energy equation 
to the hydromagnetic dynamo problem and, moreover, has certain features which 
make it amenable to correct mathematical treatment. In  particular it is shown in 
$4 that the neglect of nonlinear wave interactions is justified (a technical diffi- 
culty which appears insurmountable in the Moffatt model; see appendix C) if 

(the Rossby number R, and Q, a measure of the electrical conductivity, are de- 
fined by (2.3) and (2.6) below) and if the wave energy flux into the fluid is 
predominantly due to low frequency modes with a time scale of order 

(R, QiQ*)-l. 

Since the restriction to low frequency modes is crucial to the arguments of $4 
justifying the linearization, it is perhaps worth noting that Braginskii (1967) 
has investigated similar modes in some detail by the WKB method, which itself 
forms the basis of the perturbation procedure adopted here in $2.  More signifi- 
cantly, when the magnetic field is weak the restriction to low frequency modes 
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is reasonable since it isolates the most potent waves for magnetic-field regenera- 
tion. For this reason such modes played a key role in both I and 11. In the weak- 
field case the kinetic energy $(o)sn in (2.373) below remains almost constant, 
being virtually uninfluenced by the magnetic field. Consequently within the 
framework of the approximations made the a-effect, upon which generation of 
mean magnetic field depends, is proportional to the inverse square of the fre- 
quency [see (4.7) below]. The argument is less forceful when Lorentz forces are 
significant, for then q5(o)sn itself depends on the frequency. Indeed, at very low 
frequency, significant attenuation of $(0)sn occurs on the length scale LM [see 
(5.8b) below] which is directly proportional to the square of the frequency. 
The subsequent analysis is simplified by the assumption that the component I-1 
of the wave vector perpendicular to the rotation axis and the frequency OJ; are 
fixed. The randomness is restricted to the orientation of the wave vector. The 
important restriction on the frequency avoids possible difficulties resulting from 
non-uniformities which occur in the continuous case as the excitation frequency 
approaches zero. 

It transpires that it is expedient to introduce a second boundary into the 
problem. In  particular the fluid is supposed to lie between the planes z* = 0 and 
z* = Lo (=  O(QZ)), which are normal to the axis of rotation. Whereas the waves 
are emitted from z* = 0 they are assumed to be absorbedperfectly at z* = Lo. 
In other words waves are not reflected and consequently only upward-propa- 
gating waves prevail. The presence of the second boundary is important as it 
imposes the length scale Ql on the system together with the time scale &/a*, 
namely the time taken for wave energy to be transported across the gap. Though 
the time scale Q/Q* is long enough for significant attenuation of the waves to  
occur, it is too short for nonlinear wave interactions to transfer an appreciable 
amount of energy into new modes. It is perhaps in this respect that the most 
important mathematical simplification is achieved over the model considered 
in I (see appendix C). Since the mean magnetic field is maintained by dynamo 
action it also varies on the length scale Q1. Indeed it is shown analytically that in 
the weak-field limit there is a minimum value of the wave energy flux Fo [see 
(7.10) below], proportional to L<1 [A = 1 in (5.13) below], at z* = 0 for which 
dynamo action is possible. The fact that no wave energy flux is required when 
Lo -+ 00 is, of course, consistent with the usual state of affairs, in which dynamo 
action based on a kinematic theory is nearly always possible provided that the 
length scale of the mean magnetic field is sufficiently large. When the magnetic 
field is strong (A > I), a class of periodic solutions is determined numerically 
which is the extension (consequently the most likely solutions) of the mode 
most readily efiited in the linear theory into the nonlinear regime. It is shown 
that in the limit Lo -> 00 (or equivalently in the absence of the second boundary) 
the total magnetic energy density A per unit area in the horizontal plane [see 
(5.15) below] is finite and that the magnetic field is conhed to a length scale 
LM [see (5 .8b )  below] inversely proportional to the wave energy flux F,. The 
quantitative nature of the results provides the most important conclusions to 
be drawn from the model, not because of its physical characteristics but because 
the introduction of the second boundary is primarily an artificial device to 
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facilitate the mathematics. Indeed any major conclusions that depend critically 
on the presence of a boundary with such special properties must be regarded 
with suspicion. It must be re-emphasized here that the preferred direction of 
energy flux, on which the a-effect depends, results from wave attenuation and 
not the reflexional properties of the second boundary. Thus in a spherical system 
our analysis may have relevance locally near the boundary but then the neigh- 
bouring boundary invoked above is inappropriate. 

Finally, it  should be noted that the simplified geometry adopted here does 
not lead to certain effects that must be expected in a contained rotating system 
(e.g. see Greenspan 1968). Indeed the mean state is unlikely to be static as as- 
sumed in this paper: a geostrophic flow is almost inevitable, a magnetostatic 
balance in which Lorentz forces balance pressure forces might not be achieved 
and nonlinear wave interactions may excite mean flows. The last mechanism does 
not operate in our model (or in 11) until a high order (see footnote in §7),  nor 
does it in the case of the confined non-magnetic system discussed by Greenspan 
(1969). Clearly the increased complications of the contained system are outside the 
scope of this paper but are obviously important considerations for future studies. 

2. The energy and mean-field equations 
An unbounded, electrically conducting, incompressible, inviscid fluid rotates 

as a solid body with angular velocity S2* and is permeated by a large-scale mag- 
netic field (pp): Q*ZB, where p is the density, ,u is the magnetic permeability and 
the dimensionless vector B varies over a long length scale L ( I). Small amplitude 
disturbances with length scale I are superimposed on the system and propagate 
as waves owing to the presence of rotation and magnetic field at  frequencies 
order Q*. If the fluid velocity is written as 

where 

u* = Uou(x,t), 

x" = lx, €* = €fa* 
and U, is a typical fluid velocity (u, x and t are dimensionless), the importance 
of convection of momentum may be measured by the Rossby number 

R, = U,lQ"l. (2.3) 

Ro < 1, (2.4) 

Provided that the Rossby number is small, 

the resulting perturbation (pp)* U, b to the magnetic field is small also and the 
total magnetic field becomes 

b* = (pp)&(Q*Z)(B+R,b). (2 .5 )  

A convenient measure of the electrical conductivity is 

Q = Q*12fA, 

where h is the magnetic diffusivity. It is supposed that ohmic dissipation only 
causes weak attenuation of the waves and this is guaranteed by the assumption 

Q B  1. (2.7) 
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Since the effects of viscosity and compressibility are neglected, R, and Q are 
the only dimensionless parameters which characterize the governing equati0ns.t 

Following the usual practice in mean-field electrodynamics, the equations 
governing the flow and magnetic field are separated into two parts. First, equa- 
tions governing the slowly varying quantities such as the mean magnetic field B 
are extracted by averaging the full equations over the large scale L. The part of 
the governing equations left after the mean part, symbolized by ( ), is removed 
determines the evolution of the fluctuating (or perturbation) quantities u and b, 
which vary on the small scale 1. If, moreover, it  is supposed that Q is large but 
finite and that R, is negligible (22, 3 0) the equations governing the perturbation 
quantities may be linearized to give 

&/at +2Q x u = -0p + (B .V)  b + (b. 8) B, (2.8a) 

ab/at + (u. V) B = (B. V) u + &-'V2b, (2.8b) 

V . b  = V . U  = 0, (2.8c,  d )  

where p is the modified pressure and 8 is a unit vector in the z direction ( z  mea- 
sures distance parallel to the rotation vector). The omission here of terms like 
(u.V)u-((u.V)u) is frequently made in dynamo theory and is sometimes 
referred to as first-order smoothing. 

For the maintenance of a hydromagnetic dynamo the above limiting procedure 
is too crude since the vital inductive term V x (u x b) required to regenerate 
mean magnetic field vanishes in the limit 22, 3 0 with Q fixed! Dynamo action 
is possible only if the induction term remains comparable in magnitude with the 
diffusion term. It transpires [see (4.6) below] that the balance is achieved under 
the subtler limiting procedure R, -+ 0 with R,Q$ fixed, for which the magnetic 
diffusivity tends to zero together with the vigour of the disturbance. In this limit, 
however, the linearized equations (2.8) remain valid only on ma,king further 
approximations based on the assumption that R,Qf is small. 

The remainder of this section and $ 3  are devoted entirely to the problem of 
linearized wave propagation in a dispersive dissipative medium. Magnetic-field 
regeneration is not discussed, so that the complicated approximations described 
above are unnecessary. For the present it is sufficient, therefore, to consider the 
more transparent limiting procedure, 

R, +- 0 (fixed Q 9 l), (2.9) 

which leads immediately to the equations (2.8) governing the waves. The 
applicability of the results to  the parameter range required by dynamo theory 
is discussed in detail in $ 4. 

The key ideas that lie behind the energy transport by wave trains can be illus- 
trated by the simple case in which the magnetic field B is both steady and uni- 
form. Since (2.8) are now linear equations with constant coefficients, wavelike 
solutions proportional to exp[i(k.x-wt)] may be sought. When Q-l = 0, four 
distinct waves are determined by the dispersion relation 

DS(k,w) = wz-2s(&.S2)w-(k.B)2 = 0 (S  = 51) (2.10) 

t Henceforth dimensionless variables are generally used, so that the superscript * is 
normally reserved to specify a function's complex conjugate. 
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(Lehnert 1954), and are defined by the frequencies 

w = sw, (s = & l), (2 .1la)  

W ,  = (&.S2)+n{(k.S2)2+(k.B)2}* (n = k l ) ,  (2.1lb) 

where & = k/k. When Q-1 is small but non-zero, the waves have the slow decay 
rate Q-1 wi, where w = w, - iQ-lwi is determined by 

DS(k, w ;  Q-l) = w2 - 2s(&. a) w - (k . B)2 (1 + iQ- 1k2/w)-1 = 0 (s = & 1). (2.12) 

Thus, provided that w and k are related by the linearized dispersion relation 
(2.10),t wi is given correct to  order Q-1 by the equation 

- iwi aDS/aw + aDS/aQ-l = 0. (2.13) 

If, instead of a single wave, a wave train is investigated, it is necessary to consider 
a band of wave vectors k + k and frequencies w + w’ close to some given pair 
(k, w )  which satisfies (2.10). Expanding (2.12) as a Taylor series and retaining 
only the lowest-order terms gives 

(2.14) 

Hence (2.13) and (2.14) together with the definition 

cff = a w p k  (2.15) 

for the group velocity lead to the expression 

- i ~ ’  + ik’ . cff = - Q-lwi. (2.16) 

Corresponding to the four frequencies (2.1 I) ,  there are four group velocities 

cff = sc; (s = & l),  (2.17 a) 

k . B  ]/( 1 + (K)~)  (n = & I) ,  (2.17b) 
k .  B 

but there are only two decay rates 

(n = 5 1). 
k2 (k. B/U,)~ 

‘-’ wi = 1 + (k. B/w,)~ 
(2.18) 

Provided that the wave train is modulated over the long length scale Ql 
and long time scale Q/Q*, both w’ and k are of order Q-I and all terms in (2.16) 
are comparable in magnitude. After the change of variables 

X = Q-lx and T = Q-lt 

i t  can be argued from (2.16) (see, for example, Kawahara 1973) that the wave 
energy is governed by equation (2.32) below. Thus the terms on the left side of 
(2.16) correspond to convection of wave energy a t  the group velocity and the 
term on the right side corresponds to ohmic decay. Dispersion (or diffusive 

t There should be no serious confusion between the two definitions (2.10) and (2.12) for 
D8, as in all subsequent applications D8 and its partial derivatives are all evaluated at 
Q-1 = 0. 
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spread) of wave energy can be traced to the terms in the Taylor expan- 
sion (2.14). It is, therefore, a higher-order effect which is not accounted for by 
(2.16). Though the effect may be important in certain circumstances it is unim- 
portant in the dynamo model investigated in ss5-7. Consequently the effects of 
dispersion are pursued no further. 

When the large-scale magnetic field varies on the length scale L = QZ the 
above arguments are no longer valid and the analysis must proceed more cau- 
tiously. As an example of their inadequacy, it may be noted that it is impossible to 
distinguish V .  (c,E) from (c,. V) E in (2.32) by means of the dispersion relation 
alone. Since C, is now a function of position, the two expressions describe different 
physical mechanisms and consequently the distinction becomes important. 

The analysis proceeds on the basis of the formal expansions 

u = {u(o)(X,~) ew(x,t)+Q--1u(2)(X,7)eis(x~t)+ ...I+ ex., ( 2 . 1 9 ~ )  

b = (b(o)(X, 7)eis(x,t)+&-lb(2)(X,7) eis(x,t)+ ...}+ c.c., (2.19 b )  

where C.C. denotes 'complex conjugate'. The local frequency w* and wave vector 
k* are defined by 

w*/Q* = w(X, 7) = - aB/at,  Zk* = k(X, 7) = VB, (2.20) 

so that to lowest order (2.8) leads to the algebraic equations 

- ~wu(" + 2 8  x ~ ( 0 )  = - ikP(0) + i(k.  B) b(@, 

- iwb(0) = i(k. B) d o ) ,  

k.u(O) = k.b(o) = 0. 

When the frequency w is related to the wave vector k by the dispersion relation 
Ds(k, w )  = 0, the equations have the four solutions 

(2.21 a) 

(2.21 b )  

(2.21c,d) 

where M&(k) = &{(&ij-&i&j) +~ss,,,&,) (2.23) 

may be naturally termed the ' helicity projection operator ', the q(0)sn are arbitrary 
vectors and the summation convection is restricted to repeated subscripts. Since 
MZj defines the shape of the energy spectrum tensor for random waves [see 
(3.9) below] it plays a central role in the subsequent theory. Indeed MZj performs 
an almost identical function to the projection operator Sij - gigj used extensively 
in turbulence theories for incompressible flows. The introduction of HZj at this 
early stage has certain attractions. First, it defines forcefully the mathematical 
structure of the perturbations, and second, it reduces algebraic manipulation to a 
minimum. Several useful identities which demonstrate the principal properties 
of Mgj are listed in appendix A. In particular its reIation to helicity hinges on the 
fact that, except for a factor k, taking is curl leaves it unaltered or changes its 
sign depending on the sign of s:  

i s i j k k j M ~ ,  = skM& (2.24) 

The helicity property of the waves ( 2 . 2 2 )  has been considered in detail in I. 
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Determination of the higher-order terms depends on solving successively the 
system of algebraic equations 

-iwu+ZQxu+ikp-i(k.B)b = S, ( 2 . 2 5 ~ )  

-iob-i(k.B)u = '$3, 

ik.u = a, ik.b = c. 

(2.25 3 )  

(2.25c, d )  

Thus, for example, the order-Q-l terms u ( ~ )  and b(2) in the expansions of u and b 
are determined when*, '$3, a and c take the values given by (2.29). The formu- 
lation here is, however, general and applicable to the nonlinear case discussed in 
9 4. Multiplication of thejth components of (3 .25a ,  3 )  by M G ~ '  leads to the simpler 
set of equations 

[ - iwus' + Zis'(f; .a) uS'-i(k. B) bs'Ji = MGS' 

where 

The total velocity can now be derived from the trivial identities ui = Sijuj and 
(AI) (see appendix A). It is 

u = u1 + u-l - iak-zk. (2.273) 

Provided that the frequency w and wave vector k imposed by the inhomogeneous 
forcing term do not satisfy the dispersion relation DS'(k, w )  = 0, equations (2 .26)  
may be solved, giving 

(2.28 a )  

bf = iJf7.J 23 {-(k.B)~-d-(k.B)Q,+(w-2s'(&.S2))59j  2a 
DS'(k, w )  k 

Within the framework of the linearized equations (2.8) the first corrections to 
the amplitudes of the waves, namely u(~) and b(2t, stem from the gradient and 
time derivative of u(O)S" and B occurring over the long length and time scales 
together with the diffusion term - &-U2b(o)S". Thus the inhomogeneous forcing 
terms on the right sides of (2.25) become 

p + (B.V) b(O)+ (b(O)V) B, (2.29 a) & m O )  = - - v (0) 

(2 .29b)  

(2.29c, d )  

Since D-S(k,w) =I= 0, the contributions u - ~  and b-s to (2.27) are readily deter- 
mined from (2 .28) ,  but because DS(k,w) = 0 solutions for us and b" are only 
possible when 

aU(0) 

a7 

'$3(0) = - ab(O)/ar - ( d o ) .  V) B + (B . V) d o ) -  k2b(0), 

a@) = - V .  u(O), ~ ( 0 )  = - V . b(0). 

(2.30 a)  
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[see (2.2Sa)l. Equation ( 2 . 3 0 ~ ) ~  which provides a consistency condition on the 
expansion procedure, may be expressed on multiplication by qLO'sm* in the alterna- 
tive form 

u(O)*. &O) +p(O)*a(O) + b(O)*. = 0. (2.30 b) 

After some lengthy but routine algebraic reductions, which are perhaps best 
accomplished using suffix notation aided by the important identity 

u;o,* up = q$o)sffl* M7.S 23 M-S kl qjO)sn = c$(o)sfflM? Ik7 ( 2 . 3 1 ~ )  

U(O)* . U(0) = q!0)Sff l*Jf-5 23 p$o)sn = f#(0)sn (2.31 b )  where 

(see appendix A), equation (2.30b) leads to the transport equation 

aE(O)/aT + v . (c,E(O)) = - 2WiE(0) ,  (2.32)t 

modified by magnetic diffusion. Here E(0) is the total wave energy: 

E(0) = I u ( O ) ~ ~ +  lb(0)12 = {I +(k.B/w,)a}f#(o)sffl, (2.33) 

while the group velocity cg and decay rate wi are defined by (2.17) and (2.18) 
respectively. Equation (2.32) shows that wave energy is transported at the group 
velocity except for that lost by ohmic dissipation. 

Without the decay term in (2.32) the system becomes conservative and the 
result given by Acheson (1972, equation (4.23)) is rec6vered. The resulting 
conservation equation is typical of a wide class of problems encountered in the 
literature. It is perhaps worth noting that action E/w rather than energy is often 
the conserved quantity. Such equations are usually derived by the Lagrangian 
approach of Whitham (1965). Unfortunately this technique appears unsuited to 
non-conservative systems which result in the presence of dissipation. Conse- 
quently equations of the type (2.32) are usually only postulated. The additional 
decay term, however, introduces no new difficulties for the method of multiple 
length scales adopted here. 

Of particular relevance to the dynamo problem is the mean electromotive 
force 

8 = 8') + &-16(2) + . . . = (U x b), (2.34) 

which provides the source of mean magnetic field. It is immediately apparent 
from ( 2 . 2 2 )  that u(O)* x b(O) is pure imaginary and consequently 8 0 )  vanishes. The 
first non-vanishing contribution to & is of order &-1 and given by 

&@) = u(@* x b(2) + ~ ( 2 )  x b(O)* + C.C. (2.35) 

Here d2) and W2) are derived from (2.26) and (2.27), where 9 and $2 are defined 
by (2.29). The terms may be reduced considerably with the aid of identity (A4) 
(see appendix A) to give 

~ ( 0 ) "  x b(2) = ( - is /k)  {(~(0)* . b(2)) k - u(O)*(k. ba)}, ( 2 . 3 6 ~ )  

~ ( 2 )  x b(O)" = ( i s /k )  ((~(2).  b(O)*) k - b(O)*(k. ~ ( 2 ) ) ) .  (2.36b) 

f Henceforth the ith component of the gradient operator V is ajaXi, except in (3 .3b)  and 
(4.9) below. 
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Use of (2.26)-(2.29) then yields 

3. Random waves 
The analysis of $ 2  for a single wave train is now extended to the case of a 

random distribution of waves. This aspect of the problem is likely to be of 
greater interest in geophysical and astrophysical applications as it is difficult to 
envisage a single wave train providing the mechanism for dynamo maintenance ! 
An assumption in turbulence theory that introduces considerable simplifications 
is that of spatial homogeneity. It was pointed out in I, however, that such an 
assumption is untenable for the model considered here in $5.  The difficulty can 
be avoided by postulating local homogeneity. In  other words the turbulence is 
assumed to be homogeneous on the short length scale I but not on the long 
length scale L. Indeed whenever the background medium varies over a long 
length scale the stronger assumption of global homogeneity cannot be valid. 
Now for the purpose of solving the dynamo problem it will transpire that it 
is sufficient to determine the energy spectrum [cf. (2.373) and (4.1) below]; 
a quantity whose evolution is governed by an equation with some similarity 
(but not identical) to (2.32) [see (3.13)]. It should be emphasized again that the 
full generality of the theme developed in this section is not needed for the explicit 
model considered in $$5-7. Therefore, the reader may, if he wishes, move directly 
to $ 4 without losing the continuity of the argument. 

It is supposed that initially, a t  t = 0, a particular realization of the flow may 
be defined by 

u = s= C, &l n= C, &1 ~fi(~~~n(k0;X,0)exp(iko.x)d3ko, (3.1) 

where the condition Q(Obn(k; X, 7) = [Q(O)s-n( - k; X, 7)]* ensures that u is real. 
The decomposition into four distinct modes anticipates the character of the 
subsequent wave motion. If Q(o)sn is independent of X, (3.1) is just the usual 
Fourier representation. The explicit dependence on X emphasizes the role of 
(3.1), namely, that it provides a local Fourier decomposition of the velocity. The 
initial motion can be regarded as the superposition of infinitesimal wave trains 

O(o)sn(ko; X, 0) exp (ik, .x) d3k, (3.2) 
which evolve in the form 

where 

fi(o)sn(k; X, 7) exp [i8sn(k; x, t ) ]  d3k0, (3.3a) 

k = k(k,; X, 7) = V8, (3.3b) 
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and the infinite~imald~k, is constant. For linear theory, at  least,iWSn is determined 
by the analysis of 3 2, so that the actual motion obtained by superposing the wave 
trains is 

u = C x /WSn(k;  X, T )  exp [iBsn(k; x, t)] d3k,. (3.4) 
s= fl n= fl 

Provided that the mapping k, -+ k for given (X, T )  is one-one and continuous the 
curious representation (3.4) is unambiguous. It does, however, highlight the main 
difficulty, which is that, locally, the exponential behaviour is eikex while integra- 
tion is over k, ! Evidently the local Fourier representation must involve a weight- 
ing factor 

[asn(k; x, T)l - l  = k 2 ,  k3) /a(k01,  ICi)27 k03)? (3.5a) 

so that the velocity (3.4) is written better as 

u = C I: /gsn(k; X,T) u(0)sn(k; X,T) exp [ i P ( k ;  x,t)] d3k. (3 .5b )  
s= *1n= fl 

For the statistical ‘problem it is supposed that the wave trains are initially 
randomly distributed and spatially homogeneous on the length scale Z.? The 
velocity correlation a t  two points separated by the space vector r (which is 
order 1) is 

(ut(x, t) uj(x + r, t ) )  = I: x @$)sn,s’-n’ (k; X, T )  eik-r 

x exp [ - i(s’w,. -sun)] t d3k,, ( 3 . 6 ~ )  

s= fl n= fl s 
s’= &l n’= fl 

where w,(k) = - w,( - k) and 

(Q!O)s’n’ ( k ; X , ~ ) u y ) ~ ~ ( k ; X , ~ ) )  = 6(&+ko) (D$)sn,s’n’(k;X,~). (3.6b) 

Here the &function dependence on k, rather than k presupposes that the correct 
integration is in k, space, in view of the prescription of the initial data [cf. (3.1)- 
(3.5)]. Of particular interest is the case 

s’ = s, n’ = -n, (3.7) 

for which the velocity correlation is steady on the short time scale (as opposed 
to periodic). For this case 6(k’ + k,) = gsn(k; X, T )  S ( k  + k) and the mean part 
of ( 3 . 6 ~ )  (i.e. the part averaged over the short time scale) is 

((ui(x, t) uj (x + r, t ) ) )  = x sn k; X, 7) @i!)sn,sn (k; X ,  T )  e i k a r  d3k. 

(3.8) 
s= *la= fl sff ( 

At this point, the linear analysis of $2  may be taken over en masse, except 
for a factor + in (2.33), (2.35) and (2.37), provided that $(o)sn is given the new 
interpretation defined by 

where @$;)sn,sn = #O)sn. (3.9b) 

@$!)sn, sn = &I&. #,(oh, (3.9a)l 

t As usual, the Fourier transforms 6(o)8n(k; X, 7 )  can be generalized functions. 
$ The shape of the spectrum tensor is identical to that derived in I on the restrictive 

assumption of isotropy. Clearly this assumption only influences the scalar #o)sn. 
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It follows that the mean total energy density in real space a t  (X, 7) is 

2 2 /gsn(k; X, 7 )  E(o)sn(k; X, 7) d3k, (3.10a) 

where E(0) = +{ Iu(0) 12 + I b(O) I 2}, (3.10 b )  

while the mean value of the generation term tF2)sn in the magnetic induction 
equation (4.1) below becomes 

s=  2 fl n = & l  2 Sgsb(k;X,~)~(2)sn(k;X,7)d3k, (3.1la) 

where b(2) = g{u(O)* x b(2) + ~ ( 2 )  x b(O)* + c.c.}. (3.1 1 b )  

The time-averaged expressions (3.10) and (3.1 1) suggest that an equation 
governing the energy spectrum e(0)Sn = @nE(o)sn is more appropriate than (2.32), 
which governs E(0)sn. Such an equation is readily obtained by combining (2.32) 

(3.12) 
and the equation 

derived in appendix R. The resulting equation, 

s= fl s= f1 

agla7 + C, . vg = gv . c,, 

ae(o)/aT + c, . Ve(@ = - 20, e(0) (3.13) 

[cf. (2.32)], shows that the energy spectrum e(0)sn is constant a t  points moving at  
the group velocity sc; except for the energy lost by ohmic dissipation. It must be 
emphasized that all differentiations in (3.13) keep k, fixed, so that if an equation 
for fixed k is required the operator a/& + c, . V must be replaced by 

(3.14) 

(see appendix B). In  other words an additional term must be added to the right 
side of (3.13) to account for energy flow in wave vector space caused by spatial 
gradients of the frequency. 

The key roles of the integrals (3.10) and (3.11) might have been anticipated 
without recourse to the two-point correlations. For whereas the wave energy 
IP refers to a single entity, namely the wave train, the wave energy density e(0) 
refers to a unit volume in k space. It follows that both and do) can loosely be 
interpreted as densities; though it is curious to find r1 rather than g satisfying 
the continuity equation (B4). This curiosity can perhaps be attributed to the 
fact that density in k space has the same dimensions as specific volume in real 
space. 

4. Nonlinear wave interactions 

equation 
The mean magnetic field B is governed by the averaged magnetic induction 

Q2 aB/a7 = e2V x (Qb) + V2B, (4.1) 

where E = R,Q*. (4.2) 

Provided that neglect of nonlinear wave interactions can be justified the mean 
electromotiveforceIisgivenby(2.34)forawavetrainor (3.1l)forrandomwaves. 
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Unfortunately its justification in $ 2 was based on the crude limiting procedure 
Q large but fixed, R, -+ 0. In  this limit all nonlinear effects, including here the 
term 8(Q&) in (4.1) ( E  3 0), are lost indiscriminately and so dynamo action is 
impossible. Equations (4.1) and (4.2) do suggest, however, the more discerning 
limiting procedure e fixed, R, 3 0. For it can then be argued that, if the results 
derived so far remain valid, Q& will stay of order I [see (2.34) and (2.35)] and 
consequently magnetic induction and magnetic diffusion may become compar- 
able. 

The principal difficulty associated with the new limit is immediately apparent, 
namely the relatively large values of the nonlinear terms which occur in the equa- 
tions governing u and b [see (4.9) below]. Despite the fact that the nonlinear terms 
omitted in (2.8) are only of order R,, or equivalently order Q-3, they are an order 
of magnitude larger than the order-Q-1 diffusion term which is retained. Therefore 
to recover the previous results and extend the theory new expansions such as 

u = U, + Q-h1 + &-'u, + . . . (4.3) 

are considered which use Q-4 rather than Q-l as the small expansion parameter. 
Restricting attention for the moment to the wave train considered in $2, 

the nonlinear interactions excite a mode a t  the Q-4 level proportional to e2iB. 

However, no mean flow is generated because the real parts of (V x ,(,I*) x u(0) and 
(V x b(O)*) x b(O), which give rise to the mean Reynolds stress in the averaged 
equation of motion, both vanish. It is assumed that the mean state is static and 
that the Lorentz force (V x B) x B is in equilibrium with the pressure force. A 
further nonlinear interaction between the forced mode u1 and the free wave u, 
has two effects. It forces an order-Q-1 mode proportional to e3ie but, more signifi- 
cantly, causes the original free wave u, = u(0)eie + C.C. to resonate. The resulting 
secular behaviour of u, is removed, as in the linear case, by (2.30), where now 
(2.29) contains nonlinear terms. The ultimate effect of the wave-wave inter- 
actions is just to introduce a term proportional to E(O), in (2.321, which accounts 
for the energy transfer between the fundamental mode and the higher harmonics; 
transfer of energy to the mean flow is negligible. For the random waves considered 
in $ 3  it can also be argued, following Benney & Saffman (1966) and Benney & 
Newell (1969), that the effects of wavewave interactions enter the problem at 
precisely the same level. The arguments are more subtle and depend on the 
existence of resonant-triad interactions. 

In  the magnetic induction equation (4.1) the mean electromotive force d 
remains of order Q-l. Indeed nonlinearities affect I at precisely the same level 
as in the previous linear theory. Consequently the first non-vanishing term in 
the modified expansion (2.34) is 

8,) = (u, x b, + u1 x b, + U, x b,). (4.4) 

This may be expressed in part by the terms in (2.373), which are all linear in 
$(O)", together with new terms proportional to (#o)sn)2. It follows that the dynamo 
equation (4.1) and the extended wave energy equation (2.32) provide a coupled 
pair of equations which determines the evolution of a hydromagnetic dynamo. 
It should be noted, however, that the presence of the term Q2aB/8r indicates 
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that the magnetic field evolves over a much longer time scale than the wave 
energy. Consequently within the framework of the approximations made B may 
be regarded as steady in the wave energy equation (2.32). 

Both the wave energy and dynamo equations still contain a dimensionless 
parameter, namely e. Consequently yet more approximations can be made if E 

is assumed small, though not so small as to violate any previous approximations 
based on the smallness of Q-4. Attention is, therefore, focused on the restricted 
parameter range 

1 B € $ Q-i. (4.5) 

If, for the moment, it  is assumed that the linearization procedures are justi- 
fied, only the terms linear in the wave energy qY"sn, namely those which appear 
explicitly in (2.32) and (2.37), need to be considered. Thus the expression (2.37b) 
for &@) suggests that low frequency modes provide the most significant contribu- 
tion to dynamo maintenance. It is not unreasonable, therefore, to isolate these 
modes by assuming that 

' w  = O(6).  

In  this way &(,)is dominated by the last term in (2.37b), namely 

and if B is order 1, this provides an order 1 contribution to e2&'(2) in (4.1). It must 
be emphasized that (4.7) is a direct consequence of ohmic decay and differs 
in origin from the remaining terms in (2.37b), which result from inhomogeneities 
in the mean magnetic field B and the wave energy $(o)sn. Since the magnetic in- 
duction is linear in B, i t  is necessary to consider the dynamical equations to 
obtain arealistic estimate of the magnitude of B. If it  is anticipated that wi is order 
1 in the range of interest, it  is reasonable to suppose also that 

[see (2.18)]. 

consider the full nonlinear equations 

B = O(B) (4.8) 

In  order to assess the importance of wave-wave interactions it isnecessary to 

aupt + 251 x u + .Q-J((u. V) u - ((u . V) u)} 

= - Vp + (B . V )  b + (b.V) B +EQ-*{(b. V) b - ((b. V) b)}, (4.9a) 

(4.9b) ab/at + (u. V) B = (B .  V) u +&*V x {U x b - (U x b)} + Q-lV2b 

governing the fluctuating velocity u and magnetic field b. Arguing the case for 
a wave train, it  is clear that u,, and b, are of the same order and may both be 
assumed order 1. The forced modes u1 and b,, which have low frequency Zw, are 
determined by (2.28). Here 9 and $3 arise from the nonlinear terms in (4.9) and 
are of order 8. Moreover w and k . B  [see (4.6) and (4.8)] are of order e, while 
Ds(2k, 2w) is of order €2.  Consequently u, and b, are of order 1. They therefore 
only provide an order-e contribution to the wave energy equation (2.32) and 
may legitimately be neglected. Since the contribution to ul, b,, U, and b, from 
the wave-wave interactions is at  most of order 1, the corresponding contribu- 
tion to 4 P i s  of order 1 also. But, since it is anticipated that B is of order 6 [see 
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(4.8)] the contribution (4.7) to ~ 9 ~ )  is of order e-l and so remains an order 
of magnitude, e-1, larger than the contribution from the nonlinear terms. Thus 
it is legitimate to neglect wave-wave interactions completely in the dynamo 
equation (4.1) as well as the wave energy equation (2.32). As observed earlier, 
the conclusions arrived at  here may be expected to remain valid for random 
waves though the details of the argument are substantially different. 

The physical significance of the dominant contribution (4.7) to the mean 
electromotive force € is obscured somewhat by the large number of terms in the 
expansions of u and b required in the derivation. The vanishing of 8Co), however, 
emphasizes that to lowest order the frozen-field approximation has been made. 
The added fact that (4.7) leads to a mean electromotive force which is directly 
proportional to the magnetic diffusivity suggests that the a-effect is of the 
Braginskii (1964a, b )  type. Since magnetic field lines in this high conductivity 
limit are almost material lines, it  is natural to adopt the Lagrangian rather than 
the Eulerian viewpoint. The general Lagrangian formulation developed for the 
Braginskii dynamo by Soward (1972) in a cylindrical geometry is therefore 
appropriate. In  our problem, however, considerable simplifications ensue 
because of approximations based on the multiple length scales. Indeed the 
approximate Lagrangian formulations given elsewhere for waves (e.g. see 
Bretherton 1970) proceed to the required level of accuracy. 

Suppose for the moment that the fluid is perfectly bonducting and that the 
magnetic field in the absence of motion is BL(x). Then after fluid particles have 
been displaced a small distance Q-%,(x,t) from their initial positions x, the 
strength of the magnetic field at x + &-%, is 

B, + Q-iB,. 05. (4.10) 

When considering the high conductivity limit Q B 1, (4.10) still provides a useful 
representation of the magnetic field. Indeed for the periodic disturbances con- 
sidered here the Lagrangian magnetic field B,, correct to order B,, is just B, 
in direct contrast to the Eulerian representation (2.5). The equation governing 
the Lagrangian average (B,) of the magnetic field is given by Soward (1972, 
equation (3.3)). After the obvious modifications and approximations based on the 
multiple length scales have been made, (4.1) is recovered, where now 

(4.11) 

Upon approximating the velocity u at x by e-1a5/at, the identity (4.11) leads 
quite simply to (4.7) above. 

The simplicity of the a-effect is now readily appreciated in terms of the geo- 
metric distortion of a magnetic field line caused by a single wave ReQ(k) ei**x-wt). 
Since fluid particles describe circles of small radius, of order Q-JZ, in planes per- 
pendicular to k, the perturbed magnetic field lines have a slightly helical struc- 
ture (see figure 1). The weak mean electric currents which flow in the direction 
antiparallel to k, if s = +- 1, are associated solely with magnetic-field distortions 
and are ultimately responsible for the cc-effect. 

I1 P L M  69 
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I\ x ' Reference magnetic field B 
\ Particle '.- ,I path 
, 

Actual magnetic field line 

FIGURE 1. The actual magnetic field strength at  x + Q-Ag is B + Q-b. Vg, where the ratio 
of the displacement distance to the wavelength is of small order Q-4. 

5. A dynamo model 
The dynamo model described here illustrates the ideas developed in the 

previous sections, namely the propagation and decay of random waves together 
with possible concomitant maintenance of the magnetic field. The model is 
developed within the framework of first-order smoothing, which is justified in 
the parameter range (4.5), provided that only low frequency modes, of order 
sQ*, are excited. 

The main features of the model have already been introduced in 8 1.  In  par- 
ticular fluid is confined between perfectly conducting planes located a t  

( & - 1 z = )  Z =  0 and Z='Lo/L. 

The fluid is permeated by a large-scale horizontal magnetic field 

B = E B ~ ,  (5.1) 

which varies with Z but does not depend on the horizontal co-ordinate. The 
relatively small strength of the magnetic field B is suggested by the estimate 
(4.8), while variations in B can only occur on the very slow time scale Q3/Q*, 
as indicated by the magnetic induction equation (4.1). Waves having fixed 
horizontal wavenumber lkHl = 1, given low frequency;sw, (= w:/Q*), but 
random orientation 

k H ( X )  = (COSX,Si"X) (5 .2)  

are excited homogeneously a t  Z = 0. Since the decay time &/a* for the waves 
is short compared with the dynamo time scale, the magnetic field may be regarded 
as steady and a function of Z only in t,he dispersion relation (2.10). Consequently 
the waves propagate up through the fluid with both their frequency and hori- 
zontal wave vector fixed. The small strength sB, of the magnetic field, together 
with the low frequency swo, ensures that the vertical wavenumber 

(5.3) 

is smal1.t It follows that the phase velocity of the waves is almost horizontal, 

Ic, = C [ U ~  - (kH. B,)2]/2s~o + O(e2) (S = & 1) 

while the group velocity 

c B k  = . " ( l + ( ~ ) z ) - l s + o ( € )  (5.4) 

t The two limits o,, 9 kH. B and o,, -g kH . B correspond respectively to the inertial and 
magnetic waves investigated by Braginskii (1967) using the WKB method. 
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is almost parallel to the rotation axis. The waves, of course, suffer some attenua- 
tion due to ohmic dissipation, as indicated by (2.321, and are ultimately absorbed 
perfectly a t  2 = Lo/L. Since wave energy is transported upwards, only waves 
for which cg.S2 > 0 are possible. Consequently (5.4) indicates that only the single 
wave defined by 

in (5.3) prevails. 

visaged here. Indeed a particular realization of the flow may be defined by 

s = + l  (5.5) 

It is clear that random waves of the generality discussed in $ 3  are not en- 

which is the sum of two single integrals over the angle x rather than triple inte- 
grals throughout Fourier space. The new velocity correlation corresponding to 
(3.6) then takes the form 

where 

(5.7a) 

(5.7b) 

As in $3, @$!) is identified with Mij  $ but this time, owing to the presence of the 
second term in (5.6), summarized by the abbreviation c.c., and the resulting 2 
in (5.7a),  equations (2.33), (2.35) and (2.37) are not modified by the factor 4. 
Since it is natural to retain the parameter x and not to introduce the local wave 
vector, the complications originating from the density introduced in $ 3  are 
avoided. The simplifications ensuing from (5.7) more than compensate for the 
loss of generality imposed by the assumed form (5.6). It is reasonable to expect 
that, though these restrictions affect the quantitative results, the general con- 
clusions of the model are qualitatively correct. 

The velocity scale is normalized such that $ is unity on the boundary 2 = 0. 
Consequently, after all transients have died away, $ varies on the very slow time 
scale Q3/8*. The value of q5 is determined by the wave energy equation (2.32), 
which to lowest order in both Q and E is 

a$/a< = - (kH. BH)2 $ (LM = z*),  (5.8a) 

where curiously the length 
LM = U: L = 1 3 U ~ 2 / U ~  (5 .8b)  

is independent of the magnetic diffusivity A. The solution satisfying the boundary 
condition is 

$ = exp(-/S(k,.BH)2d<]. 0 (5.9) 

To the same order of approximation Q& in (4.1) is just &t2) and given approxi- 
mately by (4.7). Consequently the dynamo equation (4.1) reduces to 

11-2 
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Since the boundaries are perfectly conducting the horizontal component of the 
mean electric field vanishes there. Consequently the boundary condition which 
must be applied to the magnetic field is 

2 n ~ j ~ k H ( k K . B H ) Q ( ~ ; S ) d ~ + ~  = 0 (f = O,Lo/LAf). (5.11) 

This condition ensures that 

Hence, if (5.12) 

initially it remains so. Of course, the statement (5.12) is necessary if the prob- 
lem considered is to be that of dynamo maintenance ! When the magnetic field 
is steady (aB,/aT = 0) ,  integration of (5.10) shows that (5.11) holds everywhere 
in the interval 0 < f < Lo/LM and not just on the boundaries. 

The mathematical statement of the hydromagnetic dynamo problem is now 
complete and specified by the equations (5.9) and (5.10), the boundary condition 
(5.11) and the initial condition (5.12). The solutions, which are characterized by 
the single dimensionless parameter 

A = L o / L M  = L o U i / 1 3 ~ z 2 ,  ~ (5.13) 

are determined by analytic and numerical methods in the next two sections. 
The actual partitioning of wave energy between kinetic and magnetic, however, 
depends on the additional order I ratio 

L/L, = w,2 = !22"u;/;lw;2 (5.14) 

[see ('7.1s) below]. For waves of given wavelength and frequency, A may be 
regarded as either a measure of the separation Lo of the planes or the kinetic 
energy density 27rp U i  of the emitted waves. Whenever dynamo action is possible, 
the strength of the resulting magnetic field is of prime importance? as it indicates 
the efficiency of the dynamo mechanism. A convenient measure of the magnetic 
field strength is provided by the total magnetic energy per unit area in the hori- 

zontal plane, namely = Q(pLM ui) M ,  (5.15 a )  

where M = f joA 1BH[2dg (5.15 b )  

Except for numerical factors such as A, L/L, and M ,  the mean magnetic energy is 
larger than the corresponding kinetic or total wave energy by a factor Q.  

6. The weak-field case 
The investigation of the weak-field case is begun by making the simplifying 

assumption that the Lorentz force may be neglected completely. In  this case 
pure inertial waves propagate without attenuation and consequently Q takes 

7 This is in contra,st to the case for a kinetic dynamo, where the strength of the magnetic 
field is determined up t o  a multiplicative constant. 
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the value unity everywhere. The magnetic induction term is now readily deter- 
mined from the identity 

and leads to the linear equation 

which governs the evolution of the resulting kinematic dynamo. The eigenmode 
with the fastest growth rate r is 

cos (nt - $) - A  sin- nt sin (nc- @)I, 
A 

( 6 . 3 ~ )  

I , 
where m/n2 = 1 - l/A2, (6.3b) 

and the amplitude factor A and the phase $ are arbitrary constants. Evidently 
dynamo action is not possible when A < 1, while the growth rate r is positive 
when h > 1, and increases to its maximum value n2 as A 4 00. The solution (6.3) 
represents the sums of two distinct modes [see equation (4.15) in I] of the 
unbounded problem with the same growth rate. At least one of these modes 
varies on the length scale Lnl. It is a reflexion of the sensitivity of the solution 
to the boundary conditions that two modes, which are almost coincident with 
the mode of maximum growth rate, are selected as Lo -+ 00. It may be anticipated 
(but is justified later in the section) that in the full hydromagnetic dynamo the 
marginal case A = 1 corresponds to zero magnetic field strength: A = M = 0. 
The result is, of course, consistent with the assumptions already made. 

It is immediately apparent from (5.13) and (6.3) that, if the intensity of the 
emitted waves is fixed, dynamo action is always possible provided that the 
separation Lo of the planes is sufficiently large. Moreover, it is perhaps signifi- 
cant that the criterion A 2 1, necessary for dynamo action, is independent of the 
angular speed Q* and the magnetic diffusivity h [see (5.13)]. Indeed, the latter 
result indicates that the amplitude of the a-effect is proportional to h and sug- 
gests that dynamo action is possible in the limit of perfect conductivity h += 0. 

When A is increased slightly above its critical value unity t o  the new value 

A =  l + &  (&< 1), (6.4) 

a seed magnetic field will begin to grow on the extremely slow time scale &3/6Q*. 
A small fraction of the wave energy is now dissipated as it is transported across 
the gap and consequently magnetic induction is rendered less efficient. Ulti- 
mately, a finite amplitude steady state is achieved in which magnetic induction 
exactly compensates for ohmic diffusion. The nonlinear process may be analysed 
in detail by adopting a perturbation procedure in which (6.3) with A set equal to 
unityprovides the lowest-order solution. As afirst approximation (6.3) is, however, 
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inadequate because the amplitude A and phase angle @ are undetermined. The 
principal objective of the calculation is, therefore, to derive equations (6.11) be- 
low, which predict the development of A = 8ta and II. on the Q3/8R* time scale 
to the ultimate steady state. 

For convenience the magnetic field is referred to co-ordinate axes rotated 
through an angle @ about the 5 axis and written as 

BH = B~~(t ,  k H ( @ )  + B ~ ( g ,  k H ( @ )  = 8T). (6.5) 

The angle @ is chosen to be the phase angle defined by the first approximation 
(6 .3 )  and, since @(T,) may vary with time, the new reference frame in general 
rotates. It transpires that BH is of order 84 and so the magnetic field and energy 
spectrum have the expansions 

q5 = 1 +6$(1)+0(82). (6.6b) 

The value of cjV1) determined by expanding (5.9) is 

q5@) = - 8a2{E + (477)-1 [sin 2(2775 +x - $) - sin 2 ( x  - ~ ) ] } .  (6.7) 

After substitution of (6.6) and (6.7) into (5.10) the equation 

is obtained for the first correction to the magnetic field, namely BS’. A simple 
integration with respect to 5 and application of the boundary condition (5.11) on 
5 = 0 is followed by further integration, yielding the solution 

1 2nt sin 274 + (cos 2775 - 1) 

1 274 cos 2776 - sin 2775 
- 2775 sin 2775 - (cos 2n-& - 1) 

The remaining boundary condition on 5 = A is met provided that the initial 
condition (5.12) is satisfied. After substitution of (6.9) into (6.6), the integral 
requirement 

gives the two equations 
da/dT, = n2( 2 - $a2) a, 

d@/dTl = *nu2 

governing the evolution of a and @. 

(6.10) 

(6.1 1 a)  
(6.11 b)  
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Suppose that initially an arbitrary seed magnetic field BH((, 0) is introduced 
into the system. All the eigenmodes of (6.2) then decay except for (6.3), which 
has a fixed phase angle @ and a slow growth rate r = 2n2S. The finite magnetic 
field, together with ohmic dissipation, causes the wave energy density to decrease 
monotonically across the gap. The corresponding reduction of the a-effect 
becomes significant when the magnetic energy M per unit area [see (5.15)] is of 
order S. Mathematically the reduction is manifested by the nonlinear terms of 
(6.1 1) .  In the nonlinear regime the growth rate r = n2(2 - &a2) begins to decrease, 
while the phase angle @ begins to increase. Both the amplitude a and the phase 
speed d$/dT continue to increase monotonically and approach the steady state, 
in which a = 2 and d@/dTl = #n, as Tl -+ 00. If, for some reason, a was initially 
greater than 2, the steady state would be approached from above. 

A more careful analysis of the development from a seed magnetic field would 
take account of possible variations in B on the S-aL length scale in the horizontal 
plane. In  this case the additional diffusion terms 

V;a-(V,@)2a, a V ~ @ i - 2 V 8 a . V 8 $  (V, E (S-*a/aX, S-Ba/aY)) (6.12) 

appear on the right sides of (6.11a, b )  respectively. Though solution of the non- 
linear equations then becomes difficult, it  is a simple matter to show that the 
finite amplitude solution derived above is stable to arbitrwy perturbations. 

In the steady &ate the total magnetic energy per unit area is 

~ ~ Q ( P L M  u2), ( 6 . 1 3 ~ )  

the mean magnetic field has the sheared character described by (6.6u), while 
relative to the original co-ordinate system, individual magnetic field lines rotate 
about the z* axis with angular velocity 

$nSA/L&. (6.13b) 

The key factor causing the rotation is the spatial attenuation of the waves 
propagated from z* = 0, which causes regeneration of the magnetic field to be 
non-uniform. Thus, though the constant-magnitude magnetic field ( 6 . 6 ~ )  (A = 1) 
was investigated in I ,  its rotational properties could not be anticipated on the 
basis of global homogeneity of the initial turbulence. 

7. A finite amplitude steady dynamo 
When A - 1 is no longer small, the perturbation analysis of $ 6  becomes in- 

adequate. The steady finite amplitude solution described in the last paragraph 
suggests, however, a form the solution could take in the general case. In  particu- 
lar, a solution is sought in which the magnetic field is steady, 

B = (m3,BL(t)), (7.1) 

n = d$/dT.  (7.2) 

with respect to a frame of reference which rotates with constant angular velocity 

Such a solution is stable when A -  1 is small and there is no reason to suppose 
that this state of affairs changes outside the region in parameter space for which 
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the perturbation analysis is justified. In  this section the steady solution (6.13) is 
extended by numerical computation to large values of A. Similar families of 
solutions could be obtained by starting with higher-order modes which are 
initiated when A takes integer values greater than 1. It seems likely that for any 
given A steady solutions from the latter classes correspond to smaller magnetic 
energies. Moreover it may be speculated that such solutions are unstable and that 
ultimately one of the steady solutions described in this section is attained. 

The assumptions (7.1) and (7.2) introduce considerable simplifications into 
the governing equations (5.8)-(5.12). First, it  is easy to show that the energy 
spectrum (5.9) is 

@ = exp { - m(f )  - 9(<) cos [2(x - nT)  - 41, ( 7 . 3 ~ )  

where ( 7 . 3 b )  

and ( 7 . 3 4  

Second, (7 .3 )  can be substituted into (5.10), yielding the equation 

-B,.Z,(-g)+( -B,,sina+B,cosa)I,( -9 )  
n [ = 2n${e-m [ I)+”[””] 

BIJo( - g) + (Bl, cos a + B ,  sin a) I,( - g )  a t 2  B ,  ’ 
(7.4)t 

where I, and I, are the zero- and first-order Bessel functions of imaginary 
argument. The advantages gained by assuming this form of solution are con- 
siderable. Not only has the time dependence been eliminated from the problem 
but also the dependence on the angle x. The problem has thus been reduced to 
solving a nonlinear ordinary differential equation with two-point boundary 
conditions. For given A the value of n which gives a solution satisfying the 
boundary conditions can be thought of as an eigenvalue. The solution (B,,, B,) 
is then the eigenvector, for which the total magnetic energy M provides a con- 
venient norm. 

For computational purposes it is convenient to write (7 .3 )  and (7.4) in the 
form 

aD,,/at = -nB,, aD,/at = nB,,, ( 7 . 5 ~ 4  b )  

( 7 . 5 ~ )  aB,,/a[ = D,, +2ne-m{B,Io( -g)+(B, ,  sina-B,cosa)I,( -g)}, 

aB,/at = 13, - 2 7 ~ e - ~  {B,, I,( - g) + cos a + B ,  sin a)  I,( - g)), 

a(g cos a)/a[ = +(Bt - B:), a(g sin a)/a( = B,, B,, 

( 7 . 5 4  

(7.5f, 9)  

am/a[ = +(Bt +B:), (7.5e) 

where m(0) = g(0) = a(0) = 0. ( 7 . 6 ~ )  

The remaining boundary conditions become 

D,,(O) = DL(0) = D,,(A) = Dl(A) = 0. (7 .6b )  

t The type of solution sought here has some similarity with solutions presented pre- 
viously by Soward (1974, $8). 
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FIGURE 2. Steady solutions of the hydromagnetic dynamo investigated in $ 7  are charac- 
terized by the angular speed n(h/L&). and energy per unit area Q ( p L , q )  M of the 
mean magnetic field. The two characteristics parametrized by n and M are plotted against 
A = L o l L ~ ,  which provides a measure of the separation of the planes. 

Numerical integration of these equations yielded no major surprises. The 
equations were integrated by the Runge-Kutta method starting at  = 0. For a 
given value of A, guesses were made of both the initial magnetic field strength 
IBH(0)I and the angular speed n. These quantities were adjusted until the bound- 
ary condition D(A) = 0 was satisfied. For small values of A -  1, the search was 
facilitated by the analytic solutions (6.13), for which good agreement with the 
numerical calculations was obtained. Once a solution had been located a tri- 
angulation method was used to trace the continuation of the solution to large 
values of A. In  essence, a corridor in the three-dimensional A, M ,  n/4+ space was 
constructed of tetrahedrons which contained a curve C. Each point on C corre- 
sponded to a possible solution of the hydromagnetic dynamo. A more precise 
location of points on the curve was obtained by linear interpolation at the vertices 
of all triangles whose interiors were cut by the curve C. Over 1200 points were 
located on each of the curves in figure 2. Since each point corresponds to the 
solution of the differential equation a high degree of accuracy in the integration 
was not attempted. Checks were, however, made which suggested a 3-4 figure 
accuracy. Integration for moderate values of A appeared to be straight,forward. 
Difficulties are necessarily encountered as A -+ m for now the required solution 
must decaiy exponentially for large <. In  fact 

BH(<) N B$ eg1 f + Bgeq2 f ,  (7.7a) 
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where q1 and q2 are the solutions of 

( q / 2 ? ~ ) ~  = [ecAzI1( - G)I2- [n/2nq - e-nzIo( - G)12 (G = g(co)), (7.7b) 

which have negative real parts. Obviously numerical integration is extremely 
sensitive to the exponentially growing solutions, which are not permitted. 

The simplest way to interpret the solutions is to regard all parameters as 
fixed except for the separation Lo of the boundaries, which is measured by the 
dimensionless parameter A = LJLM (LM fixed). For small values of A the length 
scale Lo is imposed on the mean magnetic field [see (6 .3 ) ]  and until Lo becomes 
greater than LJf the magnetic induction is insufficient to overcome inevitable 
ohmic decay. When Lo = L,,, the marginal state discussed in the previous section 
is achieved. As Lo increases, the total magnetic energy 4 per unit area [see 
(5.15) and figure 21 begins to increase, the sheared character of the magnetic field 
persists and the field lines begin to rotate about the x* axis with angular speed 
n(h/L$) (see figure 2) .  Analytic solutions describing this behaviour near A = I 
were, of course, given in the previous section. A curiosity of the solutions is the 
way the magnetic energy 4 per unit area overshoots its final asymptotic value 
at finite values of A ( -  9). A possible explanation is a sensitivity of the dynamo 
mechanism to the angular speed n(h/L&). Such a sensitivity has beennoted in the 
work of Soward (1974) on a related problem involving BBnard convection. Slight 
variations in the angular speed are readily accounted ibr by the change in the 
separation Lo of the boundaries. It is reasonable therefore to suppose that the 
dynamo mechanism is more sensitive to n(h/L&) than the dimensions of the space 
in which the magnetic field exists. 

The solutions appear to settle down to their asymptotic behaviour when 
A - 12. The numerical solution for A = 16.6087 is illustrated in figure 3 and is 
characterized by 

M = 2.211, n/4+ = 0.00492, (7.8a, b) 

e-afIo( - G )  = 0.0856, e-MIl( - G )  = 0.0417 (G = g(A)), (7.8c,d) 

IBH(0)I = 1.838. (7 .8e )  

Since this solution lies in the asymptotic regime it is likely to resemble the solution 
for A --f 00, corresponding to the case in which the upper boundary is absent 
(Lo + co). Unlike the case A = 1, the magnetic field decreases in strength and 
ultimately decays with height at  a rate Re ( -q/LM), where 

q/2n = - 0.0448 f 0.0975i (7.9) 

is computeki from (7.7b) on the basis of the numerical results (7.8). The signifi- 
cance of L M  is now apparent, for in all cases (1 < A < m) LM provides the length 
scale over which the mean magnetic field varies. It is remarkable that the key 
dynamo length L,, should be independent of the magnetic diffusivity [see (5 .8b ) l .  

The case A + m is of particular interest as it emphasizes the mechanisms under- 
lying the hydromagnetic dynamo. Moreover the absence of the top boundary 
makes the model less artificial in a geophysical or astrophysical context. To 
maintain the magnetic field, energy is fed into the system by exciting waves on 
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FIGURE 3. The two components B,, and B ,  of the mean magnetic field are plotted against 
the height above the lower plane for the steady solution that occurs when A = 16.6087. 

the boundary z* = 0. The rate of working at  the boundary, which is measured by 
the total wave energy flux -~ 

F, =* 47~~77; 10" ( / r c g E d x  in dimensionless variables 

is therefore the most important characteristic of the external constraints. In  
view of the fact that the total wave energy density is 

27~pU:(1 ++(L/L,) IBH(O)I2) (L/L, = Q*U;/AU;~)  (7.11) 

at z* = 0, it is curious that the energy flux F, is independent of the magnetic field 
(at least to order 8) .  As the wave energy is transported upwards at the group 
velocity, a large fraction (of order I )  is lost owing to ohmic decay, a smaller 
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fraction (of order e) is transferred by wave-wave interactions to the higher har- 
monics, while an insignificant fraction (of order Q-1) is transferred to the mean 
magnetic fieldt. The success of the dynamo, however, depends on the latter 
mechanism, which is manifested here by the a-effect. Since the a-effect is directly 
proportional to the wave energy density (kinetic only), which necessa,rily 
decreases with height [see also (5.9)], the magnetic induction process becomes less 
effective as z* increases. Eventually the strength of the a-effect is insufficient 
to maintain the mean magnetic field and its exponential collapse ensues at a 
height of order LM. Once this occurs the waves propagate unimpeded as inertial 
waves having an associated wave energy flux 

F, = e-M1,( - G )  F,, (7.12) 

while the strength of the a-effect remains constant. Finally, it may be speculated 
that the rotation of the mean magnetic field lines about the x* axis on the free 
decay time scale L&/A can be attributed to the non-uniformity of the a-effect. 

It is instructive to reassess the energetics of the system on a global basis. 
The energy density of the mean magnetic field, of order QpU& is larger than the 
wave energy density by a factor Q. The former, however, is continually lost a t  a 
rate of order AIL& but is replenished a t  a rate of order QA/Lif through the 
continual conversion of wave energy. The latter decreases at  a rate of order 
lQ*/L, (larger than the former rate by a factor La$, of order Q )  by direct ohmic 
dissipation. Thus, whereas the dynamo could be called efficient on the basis of 
the ratio of mean magnetic energy density to wave energy density, the conversion 
of wave energy into mean-field energy is clearly inefficient. 

It was argued in 6 4 that low frequency oscillations provide the most significant 
contribution to the a-effect. The reasoning was essentially based on the weak- 
field solutions of $ 5 ,  for which the criterion A > 1 was necessary for dynamo 
action. Since A is inversely proportional to the square of the frequency u:, the 
criterion can always be satisfied provided that 00" is sufficiently small. For 
the fully developed hydromagnetic dynamo, which occurs in the limit A + CO, 

the energy density of the mean magnetic field is insensitive to changes in 0:. 
The length scale LM of the mean magnetic field is however proportional to ut2 
and consequently the magnetic energy A per unit area decreases with decreasing 
I$. If the size of A% is adopted as a criterion for selecting the most potent modes 
it is now no longer clear that restricting attenuation to low frequency modes is 
reasonable for the unbounded case Lo 3 00. 

The finite wave energy flux F, carried off by the inertial waves to infinity 
raises,some awkward questions. Suppose that a seed magnetic field is introduced 
at large z*/LM. Then provided its length scale is sufficiently large and boundary 
conditions are ignored the analysis in I certainly indicates that the seed magnetic 
field will grow. The neglect of boundary conditions, when computing the ultimate 
steady state, is evidently unreasonable. On the other hand the simplicity of the 

t Even at this level energy transfer t o  the mean flow is unimportant. For, as in I1 3 7, 
it can be argued that no mean flow is created either by the Lorentz force ( V  x B) x B or 
the Reynolds stresses (uOiuz,) and (boib2,). 
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argument seriously suggests possible instability in the model. The non-zero 
wave energy flux F, may be traced to the total magnetic energy 4 [see (7.12)], 
whose finite value is a direct consequence of the exponential decay of magnetic 
field. Indeed a solution without exponential decay is only compatible with 
(7.76) when the magnetic field is stationary (n = 0). But, since the a-effect 
necessarily decays and in view of the speculation below (7.12), this stationary 
state is unlikely. Therefore the present model, with its finite skin depth, appears 
reasonable and may be stable. 

Serious fundamental difficulties are raised by adopting the limit Lo --f co in its 
literal sense and stem from the time, of order Lo/lC2*, required for the wave 
energy to be transported across the gap. Consider the effect of relaxing the 
original assumption that Lo is of order L. When Lo/lC2* becomes comparable 
with the time scale c 1 & / C 2 *  for significant energy interchange between modes to 
occur owing to nonlinear wave interactions, first-order smoothing can no longer 
be justified everywhere in the interval 0 < z* < Lo. The breakdown occurs when 
Lo is of order L. The sizes of both the ratios Aand Lo/L are, therefore, restricted 
by the necessity of not violating any previous approximations based on the sizes 
of E and &. The dynamo model attributed to the limit Lo -+ 03 can then be justified 
only under the triple inequality 

1 A-1 + E + Q-4 (L/LM = @I)) .  (7.13) 

The conclusions of the previous paragraphs are thus valid only under these 
stringent limitations. 

The author wishes to thank Professor P. H. Roberts and Dr A. Davey for some 
helpful comments. 

Appendix A 
A list is provided of the principal properties of the ' helicity projection operator' 

M:j(k) = +{(Sij-EiEj) + ~ S E ~ , & ~ } ,  

where k = k/lk( .  
S,, = Af2j + 1 c f ~ S  + Ei Ei ,  (A 1) 

Mzj = Mzs,  MZj Mfk = Sssj M&, (A291 (A3) 

(A 4), (A 5) 

(A% (A7) 

eiik M i l  = is(M$Et - M:lE.,.), E ~ ~ ~ E . ~  Mil = - isMz1, 

E ~ ~ , ~  M$ M$k = - isSsSf Li M&, M:, M i f  = MZ1Mij. 

The helicity property of M& is demonstrated by (A 6) ,  while its projection 
property results from (A3). Incidently (A 1) provides a decomposition of the 
identity matrix into three projection operators having the property that the 
product of any distinct pair vanishes. 

The property (A7) is especially useful as it defines the shape of the energy 
spectrum tensor [see (2.31) and (3.9)]. The spectrum tensor is thus completely 
defined by the energy spectrum (a scalar quantity). 
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Appendix B 
The definitions k = V 8  and w = - %/at yield the well-known identity 

aki/ar = - aw/axi ,  (B 1) 

where k = k(k,; X , r )  and w = o(k; X , r ) .  The equation is differentiated with 
respect to kOj (an operation which commutes, here, with 8/87 and a/aXi as k, is 
fixed with respect to the latter operators) and yields 

Since 

routine manipulation leads to the continuity equation, 

a(a-1)la.r + v . (a-1~~) = 0. 

D/Dr = alar + cg . V 
The material derivative 

plays a key role in the analysis in $3. Here differentiations refer to fixed k,. 
The material derivative for fixed k introduced a t  the end of $ 3  is determined by 
the identity 

D 

and the well-known identity 

Dr kfixod 

(see, for example, Bretherton 1970, p. 74). 

Appendix C 
The effects (see (a)  and (b )  below) highlighted by the genera1 theory are not 

investigated in I. The following discussion suggests that neglect of these effects 
cannot be justified. 

(a)  Inertial wave interactions 

When two waves of frequency w1 and wl. interact, the resulting Reynolds stresses 
excite two new modes of frequency w1&wZ. Moreover, this new mode, whose 
amplitude is 'of order R, U,, can interact with one of the original inertial waves 
causing a resonant excitation of the other. A n  order-of-magnitude estimate shows 
that the time scale for the resonance is t,* = (Ri Q*)-l. 

Equations governing the development of the energy spectrum for weakly 
interacting nonlinear random waves have been derived by Benney & Saffman 
(1966) and Benney & Newel1 (1969). Their analysis indicates that the energy 
spectrum evolves on the time scale t: despite the fact that energy transfer is 
dominated by resonant triad interactions as opposed to the quartic interaction 
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described above. Their analysis hinges on model equations which are simpler 
than the 'equations governing the inertial waves. The added complication occurs 
in the latter case because of the relatively large region in wave vector space for 
which the frequency of inertial waves is small (k.Q < 1) .  This inevitably causes 
non-uniformities in the expansion procedures. Despite the mathematical diffi- 
culties it is clear that the influence of the low frequency modes cannot be to 
lengthen the time scale of energy transfer. 

In  I dynamo action was first investigated on the basis of a kinematic theory 
in which the flow was not influenced by Lorentz forces. A dominant mode for 
the mean magnetic field was found to emerge. Fortunately, except for its time 
dependence, this mode satisfied the equations governing the subsequent non- 
linear development, when the magnetic field was no longer weak. The hydro- 
magnetic dynamo problem was then resolved by determining an equation for 
the magnetic energy. 

Of crucial importance is the time scale on which dynamo action occurs. 
The e-folding time t:, determined by equation (4.16) in I, for the growth of the 
magnetic field in the linear regime is 

1 Rg4 O*-l when Q = O( l), 

Rg2(R,2Q)-1Q*-1 when Q 9 1. 

These estimates must certainly provide lower bounds on the dynamo time scale. 
Since the analysis of I is valid only when RiQ < I ,  it follows that 

t,* 9 t;. 

Consequently the energy spectrum is likely to evolve, because of nonlinear wave 
interactions, much faster than the magnetic field. It is therefore reasonable to 
suppose that the neglect of wave-wave interactions may have serious con- 
sequences. 

( b )  Energy transport at the group velocity 

The evolution of the waves in I is based on the assumption that the magnetic field 
is uniform and constant. Therefore the energy equation (2.32) follows immedi- 
ately from (2.16). The slow decay rate 

is, however, calculated on the assumption that the magnetic field is weak and 
consequently differs from (2.18), which is derived on the basis of large Q. 

The derivation of e in I takes no account of advection of wave energy at the 
group velocity. This procedure can only be justified aposteriori if 

(C 4) c g (  N lQ*) < Le/te*, 

where L, is the length scale of the mean magnetic field. As before, equation (4.16) 
in I can be used to give the order-of-magnitude estimate 

Le/te* = R;(zO*), (C 5 )  
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valid for all values of Q. Since R, is small, (C4) and (C5) are incompatible and, 
moreover, indicate that the advection terms in (3.32) and (3.13) are in fact larger 
than the time-derivative term by an order of magnitude. 

The effect of strong advection a t  the group velocity suggests a slight modi- 
fication to the analysis of I. To leading order e is independent of 2, so that the 
equation for the Z average of e ,  say 5, is 

A uniformly valid first approximation to the energy E is, therefore, 

aepr = - 2 q E .  (C 6) 

e = e,exp [ -ji ~ijcir].  
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